SOME PROBLEMS OF THE THEORY OF HEAT CONDUCTION FOR A TWO-

LAYERED MEDIUM

I. T. Efimova

Inzhenerno-Fizicheskii Zhurnal, Vol. 15, No. 1, pp. 129-133, 1968

UDC 536.2.01

Solutions—in complex and real form—are obtained for the nonstationary
one-dimensional and stationary two-dimensional problems of the theory
of heat conduction in a two-layered medium, The inversion formula

of a certain integral transform is employed.

This note is concerned with the temperature distri-
bution in a medium consisting of an infinite plate (0 <
< x < 1) and a half-space (I < x < *} with different
thermal properties.

In examining the one-dimensional nonstationary
problem it is assumed that the initial temperature is
arbitrary and that on the surface x = 0 it is required
to satisfy a boundary condition of the third kind of
general form. The solution of this problem, obtained
in the form of real quadratures, is associated with the
expansion in eigenfunctions of a certain spectral prob-
lem. In §2 below this expansion is used to find the
two-dimensional steady~state thermal regimes in a
layered medium.

§1. To solve the above problem of nonsteady tem-
perature distribution it is necessary to integrate the
system of equations
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with the initial condition
T(x, 0) =f(x), 0<<x<< oo, (2)
the boundary conditions
aTe(0, ) —bT (0, ) = F(f), T (o, )<< o0, t=>0, (3)
and the temperature and heat flux continuity conditions
T(@—0, t)=T(4+0, 1),
Tl —0, t)y =vT,( -0, 1. (4)

Applying the Laplace transformation

T(x) = 3 T (x, tyexp(— pt) dt,

0

we arrive at the following boundary value problem:
T =pulpT —[ (), k=1, 2,
aT’ (0) —bT (0) =F; T (o) << w0,
T(—0)=T({40), T'(—0) =vT (i 40). (5)
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After a number of calculations the solution of problem
(5) can be represented in the following form:
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The application to solution (6) of the Riemann-
Mellin inversion formula gives the unknown T(x,t):
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As may be seen from relation (9), the first term is
associated with the inhomogeneity of the initial and
the second with the inhomogeneity of the boundary
condition, it being convenient to represent the func-
tion S{x,t) in the following form:
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Sx, ) = -;7 S Fé—ul, 1) dr, (10)

having expressed it in terms of the solution u(x,t) of
problem (1)—(4) with f(x) = 0 and F(t) = 1. The func-
tion u(x,t) is represented, in its turn, by complex
integrals of the type
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In reducing integrals (11) to real form it is possible

to proceed in two ways. One of these, leading to a
solution convenient for small values of t, consists in
expanding the transformed solution in powers of ((6 —
~ 1)/(6 + 1)((a(Bp)"/? = b)/(a(Bp)*/* +b)). Such a so-
lution was obtainedby A. V. Luikov in [1] for the case of
aboundary condition of the firstkind (¢ = 0)f(x) = 0 and
F(t) = const.

The other method, leading to a solution effective at
large times, requires the reduction of complex inte-
grals such as (9) and {11) to real form by integration
along a cut made along the negative part of the real
axis of the plane of the complex variable p. Using
Cauchy's theorem,* we obtain the function u(x, t) in
real form:
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AM) =0 (—Ae*(—21). (14)

Applying an analogous method to the first term in
(9), we finally obtain
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+S(x, 1), (15)
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§2. Setting t = 0 in (15), we obtain
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which after certain transformations assumes the fol-
lowing form:

Fo) = RS“("’ d”jf(&)r nE p)de  (18)
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where

) = {M"E, 0<E<l,
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It is easy to see that Eq. (18) is the expansion of a
function f(x) of some class, specified on the interval
(0,), into an integral in eigenfunctions of the singular
spectral problem

W uBm=0 k=12
an’ (0)—bn0) =0, n({-—0)=n(+0),
0’ (1 —0) = v’ ({ +0), 1 (®) < o, (20)

with a continuous spectrum of eigenvalues.

We will show that the expansion obtained makes it
possible to construct an exact solution of the follow-
ing two-dimensional stationary problem of the theory
of heat conduction:

AT y) =0, 0<x< oo, 0<y<<H,

al, (0, y) =T (0, y) =0, T(eo, YT

*It can be shown that the equation w(p) = 0 does not
have roots satisfying the condition Re vp > 0.
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TU—0; y)=T1+0; g),
T, (0—0; v) =T ({+0; y),
T 0)=0, T(x, H) =}(x). (21)

Solving problem (21) by separation of variables,
we arrive at the formula
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Setting y = H in (22), we obtain
Fe = [ Awn w)dp, (23)
0

whence on the basis of (18) with f; = 83 =1 we im-
mediately find an expression for the unknown Afu):
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Am—ﬂmmaff®mamauma (24)

654

In conclusion we note that the proposed method of
solving stationary problems can be transferred with-
out substantial modification to the case in which
boundary conditions of the second and third kind are
specified at y =0 and y = H.

NOTATION

Bic = ckPk/M; ck is the specific heat; pk is the
density; Aj is the thermal conductivity (k =1 for
0<x<l,k=2forl<x<w); p=2ry/AL

REFERENCE

1. A. V. Luikov, Theory of Heat Conduction [in
Russian], Gostekhizdat, 1952.

30 October 1967 Ulyanov Electrical Engineering

Institute, Leningrad



